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ON THE USE OF BAYES’ THEOREM IN ESTIMATING  FALSE ALARM RATES 
ROGER H. OLSON 

U.S. Weather Bureau,+ Boulder, Colo. 

1. INTRODUCTION 
Epetein [2] has suggested that Bayes’ theorem  may 

have  applications in forecast verification. I would like 
to suggest  one  such use, namely in estimating  false  alarm 
rates for forecasts of rare  but hazardous  events  such  as 
severe winds, earthquakes,  tsunamis,  major  solar flares, 
etc. In particular  the analysis  based on Bayes’ theorem 
provides some insight into  the problem of why such fore- 
casts usually show a high false alarm  rate. 

One of the difficulties in verifying rare  event  forecasts 
is that  the forecasts are often issued only on an as-needed 
basis, and i t  is  often difficult to  determine  whether  the 
absence of a  warning  means  a  forecast of non-occurrence 
or simply that  the system was temporarily  inoperative. 
For  the present  purpose we  will assume that there is a 
routine yes-no type forecast issued for  a specified fore- 
cast  interval, such as once per day, once per  hour,  etc. 
We will define the  event E to  mean that a  forecast in- 
terval  contains a t  least  one  instance of the  event in 
question.  We will assume that a set of antecedent 
conditions, A,  had been determined that had  some pre- 
dictive association with E .  We  further assume that we 
have  a  reasonably good estimate of the probability of E, 
which we define as 

P(E)=h& N E  

Where NE is the  number of occurrences of E and N is the 
number of forecast  intervals. 

We  can define four forecast scores, using the nomen- 
clature of Brier  and Allen [I], which yield information 
on the degree of success of the  type of forecasts being 
discussed here. The definitions are  stated below and 
each is followed  on tjhe right  by n clarifying expression 
in terms of the entries a, b, c,  d of a model contingency 
table  (table 1):  

Prefigurance on  Yes Forecasts 
- - Number of Correct Yes Forecasts a 

Number of Occurrences of E a+b 
-- - 

Prefigurance on No  Forecasts 
- - Number of Correct No Forecasts -- d 

Number of Occurrences of E’ c+d  
- 

where E’ means  the non-occurrence of E. 

TABLE 1.-Model  contingency table 
Forecast 

”_____ 

b a+b 
No -.......... c d c+d 

Total L.... a+c b+d N 
___”_ 

Post  agreement on  Yes Forecasts 
- Number of Correct Yes Forecasts a 
- 

Number of Yes Forecasts aft 
” - 

Post Agreement on No Forecasts 
- Number of Correct  No  Forecasts d 

” 

Number of No Forecasts -b+d 

Although not mentioned by Brier  and Allen, the  term 
“False Alarm Rate”  has been used frequently in discuss- 
ing such  forecasts.  We define it here  as: 

False Alarm Rate=1-Post Agreement on Yes 
=1”---=-- a c 

a+c a f c  

If we let each of the above expressions on the  right 
approach  a  limit as the  denominator  approaches  infinity, 
we can now redefine the four scores as conditional  proba- 
bilities as follows, where the symbol  A  means the  event 
that  the antecedent  conditions were observed prior to  the 
forecast period and A’ means the non-occurrence of A: 

Prefigurance on Yes=‘M=P(AlE) p ( E >  

Post Agreement  on Yes=----”P(EIA) P(EA) - 
P(A) 

Post Agreement on No= p(E’A’)=p(E’iAf) 
P(A‘ 1 

The symbols used in  the above definitions are  essentially 
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those used by Feller [3] and their meaning can be  illustrated 
as follows: 

P(EA) is the  probability of the  joint occurrence of E 
and A.  To a  mathematician  this  joint occurrence means 
the  intersection of E and A; to a forecaster this  means  that 
when the  antecedent  conditions were met,  the  event E 
did  in  fact occur  subsequently. 

P(EIA) means  the  conditional  probability of E, given 
that A occurred. 

2. DERIVATION OF BAYES’  THEOREM 

We can now define the false alarm  rate  as follows: 

But since A is  associated  with  either  the  occurrence or 
non-occurrence of E, 

Now,  eliminating  intersections by means of the definition 
of conditional  probability, we have 

which  is  a  two-event  form of Bayes’  theorem.  Finally,  to 
limit  our  formula  only  to expressions which we have 
defined in words, we write: 

P(E’IA)= [ l“P(A’(E’)]P(E’)  
[l-P(A’(E’)]P(E’)+P(AIE)P(E) 

3. COMPUTATION OF FALSE ALARM RATES 

It turns  out  in  the  computation of false alarm  rates for 
rare  events  that  the  value of P(AIE) chosen  makes little 
difference as long as it is  reasonably high.. In  table 2 
then we have assumed that P(AIE)=0 .95 ,  although we 

TABLE 2.-False alarm rates for various values oj  P ( E )  and Pre- 
figurance on No, assuming Prefigurance on Yes=O.95 

P(A‘1E’) =PreIigurance on No 
P(E)  ---___-~- - 

.02 

.04 
I I I I I I I I 

TABLE 3.-Contingency table of hypothetical Yes-No forecasts 
Predictions 

I Yes 1 No 1 Totals I 

would have  gotten  almost  identical  values  by  letting i t  
equal 1 .  Choosing  lower  values of P(A1E) would, of 
course, serve to  strengthen our main  result, which is that 
high  false  alarm  rates  are  inevitable  in  forecasting  rare 
events. 

Table 2 shows that if  we consider a  rare  event  to be  one 
that occurs in 1 out of 25 or more  forecast  intervals  and 
if we agree that forecast  studies  do  not generally yield 
values of P(A’1E’) much  greater  than 0.95, we are forced 
to  accept false alarm  rates of greater  than 50 percent. 
This does not  mean that such  a  forecast  performance is 
lacking  in skill or in usefulness. In  situations where the 
penalty for operating  under  hazardous  conditions is great, 
the user should  not, if properly  educated, be  disappointed 
by  a false alarm  rate of even as high as 90 percent. 

Table 3 shows  a hypothetical  set of Verification statistics 
for assumed  values of P(E)=0.005, P(AIE) =0.95, 
P(A’IE’)=0.95.  We see from this  table  that  the false 
alarm  rate is 91 percent.  Yet  the prefigurance on Yes, 
prefigurance on No, and  percentage of “hits”  are  all  equal 
to 0.95. A user receiving this  type of service should be 
reminded that he  is getting excellent forecast service. 
He was  allowed to  operate  with  virtually 100 percent 
safety  in 94.5 percent of the cases. 
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